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This article presents a two-dimensional problem of generalized thermoelasticity for a fiber-
reinforcement anisotropic half-space under a thermal shock at its upper surface. The effects of initial
stress and rotation are both studied. Green and Naghdi’s theory of thermoelasticity is employed to
study the present problem. The inclusion of reinforcement anisotropic elastic parameter is made and
two additional terms are added to the displacement equation. The problem is solved numerically by
using the finite element method. Numerical results for displacements, stresses and temperature are
given and presented graphically in different positions. Comparisons are made for different values of
the magnetic field. The inclusion of the reinforcement parameters is also investigated.
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1. INTRODUCTION
Due to their low weight and high strength, the fibre-
reinforced composite materials are widely used in a variety
of structures. The analysis of stress and deformation of
fiber-reinforced composites has been an important subject
of solid mechanics for last three decades. Some investi-
gators such as Spencer,1 Sun et al.,2 Aboudi,3 Bunsell,4

Mallick,5 Bunsell and Renard,6 Liu7 and others, did pio-
neer works on the subject. In the last three decades, the
analysis of stress and deformation of fiber-reinforced com-
posite materials has been an important research area of
solid mechanics. Also, one can find some work on gener-
alized thermoelsticity theories in the literature.

The first relaxation time is firstly used by Lord and
Shulman8 in their theory of generalized thermoelasticity
for an isotropic body. An extension of this theory for an
anisotropic body is introduced by Dhaliwal and Sherief.9

In this theory, a modified law of heat conduction including
both the heat flux and its time derivatives replaces the con-
ventional Fourier’s law. The heat equation associated with
this theory is hyperbolic and hence eliminates the paradox
of infinite speeds of propagation inherent in both coupled
and uncoupled theories of thermoelasticity.

∗Author to whom correspondence should be addressed.

The characteristics of material response for thermal phe-
nomena are presented by Green and Naghdi10 based on
three types of constitutive response functions labeled as I,
II, III. The constitutive equations in these three types are
linearized. For example, Type I is the same as the clas-
sical heat conduction equation (based on Fourier’s law),
whereas the linearized version of Type II theory permits
propagation of thermal waves at finite speed and involves
no dissipation of thermal energy. Further, Type III is con-
sidered as the most general, which (formally) includes
the others as particular instances. It involves a thermal
damping term and predicts an infinite speed of thermal
propagation. Another generalization of the heat-flux con-
stitutive law was proposed by Coleman and Gurtin.11 It is
also referred to as a theory of heat conduction with ther-
mal memory because of the presence of a time-convolution
integral. In fact, the Coleman-Gurtin relation can be con-
sidered as the most general model among all the oth-
ers cited so far and the linear model of Gurtin-Pipkin12

is considered as one of its special cases. Though several
problems relating to generalized thermoelasticity theory of
Types II and III have been investigated.13–21 Recently, vari-
ants problems in waves are studied.22–24 Other forms are
described for example in the Refs. [25–27].
The theory of magneto-thermoelasticity has drawn the

attention of many researchers in recent years. It deals
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with the interactions between strain, temperature and
electromagnetic fields. It possesses many extensive appli-
cations in diverse fields, such as geophysics, for under-
standing of the effect of the Earth’s magnetic field on
seismic waves. In addition, the damping of acoustic waves
in a magnetic field, the emission of electromagnetic radi-
ation from nuclear devices, the development of a highly
sensitive superconducting magnetometers, electrical power
engineering, optics are considered as extensive applica-
tions of this theory.
The object of this article is to present a two-dimensional

thermal-shock problem of a fiber-reinforcement aniso-
tropic half-space. The thermoelastic interactions in the
half-space is studied due to a uniform magnetic field in
the context of the generalized thermoelasticity II proposed
by Green and Naghdi.10 The finite element solution for
the coupled governing equations is obtained. Numerical
results are provided to show the influence of the magnetic
field on the temperature, displacements and stresses.

2. FORMULATION OF THE PROBLEM
Let us consider the problem of a thermoelastic half-
space �x ≥ 0�. A magnetic field with constant intensity
H= �0�0�H0� is acting parallel to the boundary plane
(taken as the direction of the z-axis). The surface of the
half-space is subjected to a thermal shock which is a func-
tion of y and t. Thus, all the quantities considered will be
functions of the time variable t, and of the coordinates x
and y. Let us begin this consideration with the linearized
equations of electro-dynamics of slowly moving medium28

J = curlh−�0Ė (1)

curlE=−�0ḣ (2)

E =−�0�u̇×H� (3)

� ·h= 0 (4)

where �0 is the magnetic permeability; �0 is the electric
permeability, u̇ is the particle velocity of the medium, h is
the induced magnetic field vector, E is the induced electric
field vector and J is the current density vector. The comma
notation is used for spatial derivatives and superimposed
dot represents time differentiation.
These equations are supplemented by the displacement

equations of the theory of elasticity, taking into consider-
ation the Lorentz force Fi to give

�ij� j +Fi = �üi (5)

Fi = �0�J×H�i (6)

where �ij is the stress tensor, ui are the displacement
components and � is the mass density. The constitu-
tive equation for a fiber-reinforced linearly thermoelastic

anisotropic medium whose preferred direction is that of a
unit vector a is

�ij = 	ekk
ij +2�T eij +��akamekm
ij +aiajekk�

+2��L−�T ��aiakekj +ajakeki�+�akamekmaiaj

−�ij�T −T0�
ij � i� j� k� m= 1�2�3 (7)

where T is the temperature change of a material par-
ticle, T0 is the reference uniform temperature of the
body, �ij is the thermal elastic coupling tensor, 
ij is the
Kronecker delta, 	 and �T are elastic parameters, �, �
and ��L−�T � are reinforced anisotropic elastic parameters
and a ≡ �a1� a2� a3�, a

2
1+a2

2+a2
3 = 1. The heat conduction

equation
K∗Tij +Kij Ṫij = �ceT̈ +T0üi� j (8)

where ce is the specific heat at constant strain, Kij are the
thermal conductivity components and K∗ is the material
characteristic of the theory. For the problem of a thermoe-
lastic half-space �x ≥ 0� in the context of Green-Naghdi’s
(GNII) generalized thermoelasticity theory (without energy
dissipation), all the considered functions will be depend
on the time t and the coordinates x and y. Thus, the dis-
placement components ui will be

ux = u�x� y� t�� uy = v�x� y� t�� uz = 0 (9)

Let us choose the fibre-direction as a ≡ �1�0�0� so that
the preferred direction is the x-axis and Eqs. (5)–(7) are
simplified as

�xx = �	+2�+4�L−2�T +��
u

x
+ �	+��

v

y

−�11�T −T0� (10)

�yy = �	+��
u

x
+ �	+2�T �

v

y
−�22�T −T0� (11)

�xy = �L

(
v

x
+ u

y

)
(12)

Fx = �0H
2
0

(
2u

x2
+ 2v

xy
−�0�0

2u

t2

)
(13)

Fy = �0H
2
0

(
2u

xy
+ 2v

y2
−�0�0

2v

t2

)
(14)

�A11+�R2
H�

2u

x2
+ �A12+�R2

H�
2v

xy
+A13

2u

y2
−�11

T

x

= �

(
1+ R2

H

c2

)
2u

t2
(15)

�A22+�R2
H�

2v

y2
+ �A12+�R2

H�
2u

xy
+A13

2v

x2
−�22

T

y

= �

(
1+ R2

H

c2

)
2v

t2
(16)

K∗
(
2T

x2
+ 2T

y2

)
=�ce

2T

t2
+T0

2

t2

(
�11

u

x
+�22

v

y

)
(17)
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where

A11=	+2��+�T �+4��L−�T �+�� R2
H = �0H

2
0

�

A12=�+	+�L� A13=�L� A22=	+2�T

c2= 1
�0�0

� �11=�2	+3�+4�L−2�T +���11

�22=�2	+���11+�	+2�T ��22

(18)

in which �11, �22 are coefficients of linear thermal expan-
sion. For convenience, the following non-dimensional vari-
ables are used:

�x′�y′�u′�v′�=c1��x�y�u�v�� t′ =c21�t

T ′ = �11�T −T0�

�c21
� �= �ce

K11

�� ′
xx��

′
xy��

′
yy�=

1

�c21
��xx��xy��yy�� h′ = h

H0

� c21=
A11

H0

(19)

In terms of the non-dimensional quantities defined in
Eq. (19), the above governing equations reduce to (drop-
ping the dashed for convenience)

�xx =
u

x
+B1

v

y
−T (20)

�yy = B1

u

x
+B2

v

y
−B3T (21)

�xy = B4

(
v

x
+ u

y

)
(22)

�xx

x
+ �xy

y
+�

(
2u

x2
+ 2v

xy

)
= �

2u

t2
(23)

�xy

x
+ �yy

y
+�

(
2u

xy
+ 2v

y2

)
= �

2v

t2
(24)

c2T

(
2T

x2
+ 2T

y2

)
= 2T

t2
+ 2

t2

(
�0

u

x
+�1

v

y

)
(25)

where

�B1�B2�B4�=
1
A11

�A12�A22�A13�� B3 =
�22

�11

� = 1+ R2
H

c2
� c2T = K∗

�ce
� � = R2

H

c21

��0� �1�=
T0�11c

2

A11�ce
��11��22�

(26)

3. FINITE ELEMENT FORMULATION
The Finite element method is a powerful technique orig-
inally developed for numerical solution of complex prob-
lems in structural mechanics, and it remains the method
of choice for complex systems. A further benefit of this
method is that it allows physical effects to be visual-
ized and quantified regardless of experimental limitations.

On the other hand, the finite element method in different
generalized thermoelastic problems has been applied by
many authors (see for instant Refs. [28]–[33]).
In this section, the governing equations of generalized

thermoelasticity based upon Green and Naghdi’s theory
are summarized, using the corresponding finite element
equations. In the finite element method, the displacement
components u, v and the temperature T are related to the
corresponding nodal values by

u=
m∑
i=1

Niui�t�� v=
m∑
i=1

Nivi�t�� T =
m∑
i=1

NiTi�t� (27)

where m denotes the number of nodes per element, and
Ni are the shape functions. The eight-node isoparametric,
quadrilateral element is used for displacement components
and temperature calculations. The weighting functions and
the shape functions coincide. Thus,


u=
m∑
i=1

Ni
ui� 
v=
m∑
i=1

Ni
vi� 
T =
m∑
i=1

Ni
Ti (28)

It should be noted that appropriate boundary conditions
associated with the governing equations, Eqs. (23)–(25)
must be adopted in order to properly formulate a prob-
lem. Boundary conditions are either essential (geometric)
or natural (traction) types. Essential conditions are pre-
scribed displacements u, v and temperature T while, the
natural boundary conditions are prescribed tractions and
heat flux. They expressed as

�xxnx +�xyny = �̄x� �xynx+�yyny = �̄y

qxnx+qyny = q̄
(29)

where nx and ny are direction cosines of the outward unit
normal vector at the boundary, �̄x and �̄y are the given
tractions values, and q̄ is the given surface flux.
In the absence of body force, the governing equations

are multiplied by weighting functions and then are inte-
grated over the spatial domain � with the boundary � .
Applying integration by parts and making use of the diver-
gence theorem reduce the order of the spatial derivatives

Fig. 1. Variation of horizontal displacement u with distance x.
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Fig. 2. Variation of vertical displacement v with distance x.

and allows for the application of the boundary condi-
tions. Thus, the finite element equations corresponding to
Eqs. (23)–(25) can be obtained as

∫
�

⎧⎪⎪⎨
⎪⎪⎩


u�̄x


v�̄y


T q̄

⎫⎪⎪⎬
⎪⎪⎭
d�

=
∫
�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩


u

x
�xx+


u

y
�xy


v

x
�xy+


v

y
�yy

c2T

(

T

x

T

x
+ 
T

y

T

y

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
d�

+
∫
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩


u

[
2u

t2
−�

(
2u

x2
+ 2u

y2

)]


v

[
2v

t2
−�

(
2v

x2
+ 2v

y2

)]


T

[
2T

t2
+ 2

t2

(
�0

u

x
+�1

v

y

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

d� (30)

Symbolically, the discredited equations of Eq. (23) can be
written as

Md̈+ cḋ+Kd = F ext (31)

Fig. 3. Variation of temperature T with distance x.

Fig. 4. Variation of longitudinal stress component �xx with distance x.

where M , C, K, and F ext represent the mass, damping,
stiffness matrices, and external force vectors, respectively,
d = �u v T �T . On the other hand, the time derivatives
of the unknown variables have to be determined by the
Newmark time integration method (see Wriggers34).

4. NUMERICAL EXAMPLE
To study the effect of magnetic field on wave propaga-
tion, the following physical constants for generalized fibre-
reinforced thermoelastic material are used.

�=2660 kg/m3� 	=5�65×1010 N/m2

�T=2�46×1010 N/m2� �L=5�66×1010 N/m2

�=−1�28×1010 N/m2� �=220�90×1010 N/m2

�11=0�017×10−4 deg−1� l=1� �22=0�015×10−4 deg−1

ce=0�787×103 Jkg−1deg−1� T0=293 k� T1=1

K11=0�0921×103 Jm−1s−1deg−1

K22=0�0963×103 Jm−1s−1deg−1

The numerical applications will be carried out for the
displacements u and v, temperature T , and stresses �xx ,
�xy and �yy that being reported herein at y = 0�5, t = 0�2

Fig. 5. Variation of tangential stress component �xy with distance x.
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Fig. 6. Variation of normal stress component �yy with distance x.

and for different values of primary magnetic stress H0.
Effect of the primary magnetic field H0 = 0, H0 = 5×
102 and H0 = 103 on the field quantities are showed in
Figures 1–6. The distributions of u, v, T , �xx , �xy and �yy

are presented through the longitudinal x-direction.
All quantities, except the temperature, are very sensi-

tive to the variation of the primary magnetic field H0. The
magnetic field itself has no effect on other quantities for
x > 0�3. In the interval 0≤ x < 0�3, as H0 increases the ver-
tical displacement v decreases while the tangential stress
�xy decreases. The temperature T decreases as x increases
and it may be independent of H0. However, the values of
the longitudinal and normal stresses �xx and �xy as well
as the horizontal displacement u oscillate randomly with
distance x.

Figure 1 shows that the horizontal displacement u is
no longer increasing and it is decreasing monotonically
with maximum values at x � 0�1. Figure 2 shows that the
vertical displacement v decreases directly as x increases.
Both u and v reach to zero when x � 0�3. Once again, the
temperature T is independent of H0 and it decreases as x
increases and vanishes when x� 0�3 as shown in Figure 3.
Figure 4 shows that the longitudinal stress �xx is no longer
decreasing and it is increasing monotonically with mini-
mum values at 0�11 < x < 0�13. The same behaviors are
illustrated by �xy and �yy in Figures 5 and 6, respectively.
The two stresses have minimum values at 0�02< x < 0�04
and 0�05< x < 0�1, respectively.

5. CONCLUSION
In this paper, a finite element scheme has been described
to solve the present shock-problem. The results obtained
show that behavior of the displacements, temperature, and
stresses may change significantly by reason of influence
of the primary magnetic field. As observed of the plots of
all quantities, the primary magnetic field has a significant
effect on all the studied quantities, except perhaps the tem-
perature. The thermoelastic horizontal displacement first
increases then decreases, but the stresses first decrease then

increases. However, the vertical displacement and temper-
ature decrease directly to reach zero values along the hor-
izontal direction.
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